

832C

Description

The 832C *Translucent Epoxy Encapsulating and Potting Compound* is an electric grade epoxy. It is simple to mix and easy to use. This two parts clear epoxy provides great insulation and protection value.

It protects against static discharges, shocks, vibrations, and mechanical impacts. It insulates against heat and conductivity. It is extremely resistant to environmental humidity, salt water, and many harsh chemicals.

Applications & Usages

The 832C epoxy is used to pot or encapsulate printed circuit assemblies in protective blocks. The cured epoxy improves reliability, operational range, and lengthens the life of electrical and electronic parts.

Its primary applications are in the automobile, marine, aerospace, aviation, communication, instrumentation, and industrial control equipment.

Benefits and Features

- Extreme impact resistance (contains a form of nylon)
- Extreme resistance to water and humidity allowing submersion if needed
- Strong chemical resistance to brine, acids, bases, and aliphatic hydrocarbons
- Good protection of electronics against corrosion, fungus, thermal shock, and static discharges
- Easy 2A:1B mix ratio compatible with most dispensing equipment
- Negligible Volatile Organic Content (VOC)
- RoHS Compliant

Curing & Work Schedule

Properties	Value
Working Life a)	60 min
Shelf Life	≥3 y
Full Cure @22 °C [72 °F]	24 h
Full Cure @65 °C [149 °F]	60 min
Full Cure @80 °C [176 °F]	45 min
Full Cure @100 °C [212 °F]	35 min
Storage Temperature	16 to 27 °C
of Unmixed Parts	[60 to 80 °F]

a) Working life assumes 100 g and room temperature. A 10 °C increase can decreases the pot life by half.

Temperature Service Ranges

Properties	Value
Constant Service	-30 °C to 140 °C
Temperature	[-22 to 284 °F]
Maximum Intermittent	175 °C
Temperature b)	[347 °F]

b) The maximum intermittent temperature provides temperature extremes that can be withstood without damage for short periods of time only.

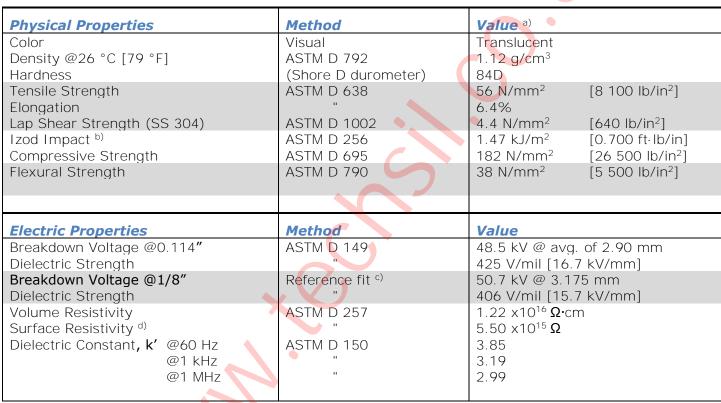
832C

Principal Components

Part A: Bis-A Epoxide Resin

Name

Alkyl Glycidyl Ether Epoxide Resin


Part B: Curing Polyamide
Curing Aliphatic amine

CAS Number 25068-38-6

68609-97-2 68082-29-1

112-24-3

Properties of Cured 832C

Note: Specifications are for epoxy samples cured at 65 °C for 1 hour, with additional curing time at room temperature for optimal results. For most tests, samples were conditioned at 23 °C and 50% RH.

- a) $N/mm^2 = mPa$; $Ib/in^2 = psi$;
- b) Sample thickness 0.214"
- c) To allow comparison between products, the Tautscher equation was fitted to the experimental dielectric strengths and interpolated to a standard reference thickness of 1/8" (3.175 mm).
- d) The surface (sheet) resistivity unit is commonly referred to as "Ohm per square."

832C

Properties of Cured 832C (Continued)

Thermal Properties	Method	Value
Glass Transition Temperature (Tg)	ASTM D 3418	35 °C [95 °F]
Coefficient of Thermal Expansion (CTE) e)	ASTM E 831	
Before Tg		77 ppm/°C
After Tg		195 ppm/°C
Thermal Conductivity @25 °C [77 °F]	ASTM E 1461	0.276 W/(m·K)
@50 °C [122 °F]	п	0.294 W/(m·K)
@100 °C [212 °F]	п	0.309 W/(m·K)
Heat Deflection Temperature (HDT) f)	ASTM D 648	44 °C [111 °F]

e) Coefficient of Thermal Expansion (CTE) units are in ppm/°C = in/in/°C \times 10⁻⁶ = unit/unit/°C \times 10⁻⁶

Properties of Uncured 832C

Physical Property	Mixture (2A:1B)				
Color	Translucent, Amber Tint				
Viscosity a) at 20 °C [73 °F]	2 700 cP [2.7 Pa·s]				
Density	1.08	g/mL			
Mix Ratio by volume (A:B)	2.0:1.0				
Mix Ratio by weight (A:B)	2.3:1.0				
Solids Content (w/w)	100%				
Physical Property	Part A	Part B			
Color	Translucent, Amber Tint	Clear, Amber Tint			
Viscosity a) at 24°C [73 °F]	1 900 cP [1.9 Pa·s]	5 800 cP [5.8 Pa·s]			
Density	1.13 g/mL	0.963 g/mL			
Flash Point	>150 °C [>302 °F]	>122 °C [>252 °F]			
Odor	Mild	Musty			

a) Brookfield viscometer at 50 RPM with spindle LV4

f) HDT under 1820 kPa [264 lb/in²] load

832C

Compatibility

Adhesion—As seen in the substrate adhesion table, the 832C epoxy adheres to most materials found on printed circuit assemblies; however, it is not compatible with contaminants like water, oil, and greasy flux residues that may affect adhesion. If contamination is present, clean the printed circuit assembly with electronic cleaner such as MG Chemicals 4050 Safety Wash, 406B Superwash, or 824 Isopropyl Alcohol.

Substrate Adhesion in Decreasing Order

Physical Properties	Adhesion
Aluminum	Stronger
Steel	
Fiberglass	
Wood	
Glass	
Polycarbonate	
Acrylic	▼ .
Polypropylene ^{a)}	Weaker

a) Does not bond to polypropylene

Chemical Resistance—The chemical solvent resistance table presents the percent weight change over the indicated period. The results show low water absorption and a high chemical resistance to water and most ionic species. Softening and swelling occurs for aggressive organic solvents.

Chemical Solvent Resistance

Rev. Date: 16 January 2016 / Ver. 2.00

Physical Properties	Weight Change 3 days	Weight Change 45 days
Water	< 0.0 %	<1%
Hydrochloric Acid	< 0.0 %	<1%
Isopropyl alcohol	0.3%	<1%
Mineral spirits	0.3 %	0.3 %
Xylene	2 %	9 %
Ethyl Lactate	3 %	7 %
Iso hexanes	5 %	8%
Acetone	7 %	destroyed

Storage

Store between 16 and 27 °C [60 and 80 °F] in dry area away from sunlight. Prolonged storage or storage at or near freezing temperatures can result in crystallization.

If crystallization occurs, reconstitute the component to its original state by temporarily warming it to 50 to 60 °C [122 to 140 °F]. To ensure full homogeneity, stir thoroughly the warm component, reincorporating all settled material. Re-secure container lid and let cool down before use.

832C

Health and Safety

Part A

HMIS® RATING

HEALTH:	*	2
FLAMMABILITY:		1
PHYSICAL HAZARD:		0
PERSONAL PROTECTION:		

Part B

HMIS® RATING

HEALTH:	*	3
FLAMMABILITY:		1
PHYSICAL HAZARD:		0
PERSONAL PROTECTION:		

NFPA® 704 CODES

NFPA® 704 CODES

Approximate HMIS and NFPA Risk Ratings Legend:

0 (Low or none); 1 (Slight); 2 (Moderate); 3 (Serious); 4 (Severe)

Health and Safety: The 832 parts can ignite if the liquid is heated.

Wear safety glasses or goggles and disposable polyvinyl chloride, neoprene, or nitrile gloves while handling liquids. Part B in particular causes skin burns and may cause sensitization if exposed over a long period of time. The epoxy is black and will not wash off once cured: wear protective work clothing. Wash hands thoroughly after use or if skin contact occurs. Do not ingest.

While the product has low volatility and moderate odor, use in well-ventilated area.

The cured epoxy resin presents no known hazard.

832C

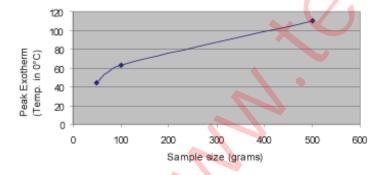
ATTENTION! If the parts have clumped

[122 °F] until fully re-liquefied. Let cool

(crystallized), pre-heat at 50 °C

to room temperature before use.

Application Instructions


Follow the procedure below for best results. If you have little or no experience with the 832C epoxy, please follow the long instructions instead. The short instructions provided here are not suitable for first time users.

To prepare 2:1 (A:B) epoxy mixture

- 1. Scrape any settled material in the **Part A** container; and stir and fold material until homogenous.
- 2. Scrape any settled material in the *Part B* container; and stir and fold material until homogenous.
- 3. Measure *two* parts by volume of the pre-stirred A, and pour in the mixing container.
- 4. Measure **one** part by volume of the pre-stirred **B**, and slowly pour in the mixing container while stirring.
- 5. Let sit for 30 minutes to de-air. —OR—
 - Put in a vacuum chamber, bring to 25 inHg pressure, and wait for 2 minutes to de-air.
- 6. If bubbles are present at top, use the mixing paddle to gently break them.
- 7. Pour mixture into the mold or container containing the components to be encapsulated.

ATTENTION! Mixing >500 g [0.4 L] of Part **B** at a time into **A** decreases working life and promotes flash cure. Use of epoxy mixing machines with static stirrer recommended for large volumes. Limit size of hand-mixed batches.

Peak Exotherm Temperature

To room temperature cure the 832C epoxy

Let stand for 24 hours.

To heat cure the 832C epoxy

Put in oven at 65 °C [149 °F] for 60 minutes.

-OR-

Put in oven at 80 °C [176 °F] for 45 minutes.

-OR-

Put in oven at 100 °C [212 °F] for 35 minutes.

Page **6** of **7**

832C

ATTENTION!

Due to exothermic reaction, heat cure temperatures should be at least 25% below the maximum temperature tolerated by the most fragile PCB component. For larger potting blocks, reduce heat cure temperature by greater margins.

Packaging and Supporting Products

Cat. No.	Form	Net Volume		Net Weight	4	Pac	kage Weig	ıht
832C-375ML	Liquid	375 mL	12.7 fl oz	402 g	12.9 oz		0.6 kg	1.3 lb
832C-3L	Liquid	2.55 L	0.68 gal	2.73 kg	6.0 lb		3.6 kg	8.0 lb
832C-60L	Liquid	60.0 L	16.0 gal	64.3 kg	142 lb		65 kg	150 lb

Note: Package weight is an estimate: it may vary due to the use of different boxes and packing material

Supporting Products

- Epoxy and Adhesive Cleaner: Cat. No. 8328-500ML, 8328-20L
- Epoxy Mold Release (for temperature cures ≤85 °C): Cat. No. 8329-350G

Technical Support

Contact us regarding any questions, improvement suggestions, or problems with this product. Application notes, instructions, and FAQs are located at www.mgchemicals.com.

Email: support@mgchemicals.com

Phone: 1-800-340-0772 (Canada, Mexico & USA)

1-905-331-1396 (International) Fax: 1-905-331-2862 or 1-800-340-0773

Mailing address: Manufacturing & Support

1210 Corporate Drive

Burlington, Ontario, Canada

L7L 5R6

Head Office

9347-193rd Street

Surrey, British Columbia, Canada

V4N 4E7

Warranty

M.G. Chemicals Ltd. warranties this product for 12 months from the date of purchase by the end user. *M.G. Chemicals Ltd.* makes no claims as to shelf life of this product for the warranty. The liability of *M.G. Chemicals Ltd.* whether based on its warranty, contracts, or otherwise shall in no case include incidental or consequential damage.

Disclaimer

This information is believed to be accurate. It is intended for professional end users having the skills to evaluate and use the data properly. *M.G. Chemicals Ltd.* does not guarantee the accuracy of the data and assumes no liability in connection with damages incurred while using it.